Influence of bottled water on rehydration following a dehydrating bout of cycling exercise

Editor’s Note: Although the following study was done on a particular alkaline liquid supplement, we are posting the results to show the effects alkaline water can have in general. Making your own fresh ionized alkaline water from a Chanson water ionizer is a much better alternative to buying bottled alkaline water or supplements and will actually save you money in the long run.

Influence of bottled water on rehydration following a dehydrating bout of cycling exercise
by Daniel Heiland John Seifert
Published: 31 July 2009
© 2009 Heil and Seifert; licensee BioMed Central Ltd.

Background

The purpose of this study was to compare the ability of two types of bottled water to rehydrate cyclists following a dehydrating bout of cycling exercise. It was hypothesized that rehydration would occur faster and/or more completely following the consumption of bottled glacier water supplemented with Alka-PlexLiquid (experimental condition) as compared to a filtered bottled water (placebo condition).

Methods

Ten male cyclists (Mean ± SD: 40 ± 5 years age, 51.3 ± 7.8 ml/kg/min maximal oxygen uptake) performed two trials (1-week apart) of stationary cycling in a warm room (27.5–28.5°C, ≥50% relative humidity) for 75–105 minutes at a power output that initially elicited 70–80% of maximal heart rate. Subjects exercised until dehydrating to -2.5% of pre-exercise nude body weight. Each cycling bout was followed immediately by the consumption of either the experimental (Akali; Glacier Water Company, LLC; Auburn, WA USA) or placebo (Aquafina; PepsiCo Inc., Purchase, NY USA) bottled waters (counterbalanced order, double-blind design) in a volume equivalent to body weight lost. Blood and urine samples, as well as nude body weight, were measured at fixed time points: Immediately pre- and post-exercise, and 30, 60, 90, 120, and 180 minutes post-exercise. Urine samples were analyzed for volume output and specific gravity, while changes in total serum protein were determined from the blood samples. Data were evaluated with paired t-tests and repeated measures ANOVA with planned contrasts at the 0.05 alpha level.

Results

Neither absolute (Mean ± SE; -2.00 ± 0.05 and -1.95 ± 0.07 kg) nor relative (-2.6 ± 0.1 and -2.5 ± 0.1%) amounts of body mass lost differed between placebo and experimental dehydration (P > 0.05), respectively. Urine output was significantly higher at time points ≥60 minutes post ingestion: 103.5 ± 24.4 versus 58.4 ± 14.0 mls, 183.1 ± 33.1 versus 125.2 ± 33.4 mls, 198.7 ± 35.9 versus 97.7 ± 25.5 mls, 234.5 ± 53.0 versus 107.6 ± 21.6 mls, for 60, 90, 120, and 180-min post ingestion, respectively (P < 0.05). At the same time points, urine specific gravity tended to be higher for the experimental (1.014–1.012) than placebo water (1.005–1.008;P = 0.02–0.08). Lastly, serum protein tended to be less concentrated in the blood for the experimental water trial than for the placebo water trial at 120-minutes (7.7 ± 0.03 versus 6.7 ± 0.2 g/L; P = 0.08) and 180-minutes (7.8 ± 0.3 versus 6.7 ± 0.2 g/L; P = 0.08) post ingestion. Water retention at the end of the 3-hour recovery period, calculated as 1 minus the ratio of total urine volume (TUV) to ingested water volume (IWV) as a percentage ([1-(TUV/IWV)] × 100)), was significantly higher for the experimental water trial (79.2 ± 3.9%) than for the placebo water trial (62.5 ± 5.4%; P < 0.05).

Conclusions

Consumption of the experimental water resulted in significantly less urine output, a tendency for more water to be retained in the blood, and a higher overall water retention rate over the placebo water. Collectively, these results indicate that consumption of the experimental bottled water following a dehydrating bout of exercise provided faster and more complete rehydration to cyclists than the highly-filtered bottled water. It is likely that the Alka-PlexLiquid supplement, the high pH of 10.0, or some other unidentified component of the experimental water, was responsible for these observations.

Acknowledgements: This study was supported by the Glacier Water Company, LLC, Auburn, WA 98001.

Heil D. Seifert S. Influence of bottled water on rehydration following a dehydrating bout of cycling exercise. Journal of the International Society of Sports Nutrition 2009, Published: 31 July 2009 Retrieved from http://www.jissn.com/content/6/S1/P9

Disclaimer: The testimonials, videos, articles and comments herein are the expressed opinions and experiences of the individual persons shared under their 1st amendment right of free speech. The information on this website has not been reviewed by the FDA. Products offered for sale herein are not intended to treat, cure or prevent any disease or health condition. No medical claims are being made. Click here to see why we must say that.

 


suggest a friend to free water calculator at alkalinewaterbenefits.com  Suggest to a friend










You message was sent!


Free Customized Report

How much water should you drink per your body weight? Get a free customized water report, click here to use our water calculator.

Free Stuff

Click here to get Free Water Class Consultation, free heath DVD, Free Water Demo,e.t.c

Thanks for playing our puzzle. Do you know that: